
JOURNAL OF AEROSPACE COMPUTING, INFORMATION, AND COMMUNICATION
Vol. 2, May 2005

Book Review

C++ and Object-Oriented Numeric Computing for Scientists and Engineers
DaoqiYang, Springer-Verlag, NewYork, July 2000, ISBN: 0-387-98990-0, Hardcover, 464 pp., $47.75

“C++ and Object-Oriented Numeric Computing for Scientists and Engineers” is one of the few C++ books targeted
toward the scientific community that uses numeric computing as the primary research tool. The book is divided into
three parts: the first part introduces the reader to general programming concepts, the second part focuses on the
unique aspects of C++ as an object oriented programming language, and the third part concludes the book with a
description of the C++ standard libraries on containers and algorithms. The book consists of eleven chapters written
in 440 pages, and the readers can download sample programs used in the text from a dedicated web-page. The book
provides a concise, and at some places succinct, description of the ISO/ANSI C++ programming language. This
is a good book for readers who have working knowledge of C++ and would like to learn to use it for scientific
computing.

Unlike other programming books, this book does not commence with a “hello world” program, but introduces
another, somewhat involved sample program to explain basic input/output (I/O), variable types, iterators, and basic
C++ program structure. The first chapter provides a very useful, and often disregarded, discussion on numerical limits
of the basic numeric data types (int, float, etc.) provided by C++. The importance of recognizing the “finiteness” of
the accuracy of computer-generated data cannot be emphasized enough.

Throughout the book the author presents several programming tips for numeric computing such as offsetting
pointers to easily access band matrices. Section 4.4 deserves a special mention as it briefly introduces some essential
tools such as Makefile, timing programs, and linking C/C++ programs with Fortran codes. The description is very
concise but is enough to allow the reader to start using these features with his codes.

The second part of the book begins with a succinct description of classes. The description is too brief for a beginner
to absorb all the material in one reading. Perhaps all the important things are covered in this chapter (Chapter 5),
but they are not repeated or visually emphasized to make a lasting impression on the reader new to the concept of
classes. The three essential features of object oriented programming (OOP): data encapsulation, inheritance, and
polymorphism are only briefly mentioned in this chapter, but described more fully in later chapters.

The author has tried to conclude every chapter with a section on practical numeric computing examples such as
interpolation, root finding methods etc., which I found to be most appealing. It is often not the concepts of OOP that
users find difficult to comprehend but the implementation of OOP style for computing problems. The examples and
exercises in this book are very helpful in this regard. The exercise problems are mostly related to the application of
OOP techniques to numeric computing. They are very “doable” and help in understanding the concepts. The book
also provides helpful hints to relatively difficult exercise problems.

The discussion on efficient techniques for numerical integration using expression templates and template meta-
programs in chapter 7 is a very revealing description of how the advanced features of OOP can be used without losing
the efficiency of a sequential program. The book also mentions a few C++ scientific computing libraries such as
PETE and POOMA, which were being developed at Los Alamos National Laboratory at the time of publication of
the book. A free version of POOMA, FreePOOMA is hosted at http://savannah.nongnu.org. Chapter 8
describes the concepts of inheritance and polymorphism, virtual functions, and abstract classes. It also discusses
efficiency issues with run-time polymorphism and suggests the use of static (compile-time) polymorphism for higher
efficiency.

Received 14 February 2005; revision received 24 March 2005; accepted for publication 25 March 2005. Copyright © 2005 by
the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal
or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood
Drive, Danvers, MA 01923; include the code 1542-9423/04 $10.00 in correspondence with the CCC.
Book Reviews reflect the opinions of the individual authors. They are not necessarily the opinions of the Editors of this journal
or of AIAA.

236

BOOK REVIEW

The third and final part of the book deals with the standard containers and algorithms in the Standard Template
Library (STL) of C++. The explanation provided here is not at par with the quality of the rest of the book. It does
not provide examples of scientific usage for features such as linked lists, sets, etc. Examples such as Huffman coding
or binary search trees could greatly add to the content. Interested readers should consider Stroustrup1 for in-depth
understanding of these features of C++. In the final chapter, the different ideas presented throughout the book are
combined and C++ codes for many linear system solvers are provided.

Overall, the book is very informative and useful to people interested in using OOP for scientific computing. It
does little to motivate a sequential programmer to choose an OOP style instead. This can be addressed by adding a
chapter or a section listing the benefits of using the OOP paradigm (supported by languages such as C++) over the
sequential programming style (Fortran, C, etc.). The book is fairly easy to read and understand provided the reader
already has a basic understanding of the C++ language. Readers with sequential programming experience may also
find the last two parts of the book somewhat difficult to comprehend because of brevity.

Readers aiming at learning C++ should instead consider Shtern2, Schildt3 or Davis4. Readers looking for an
introductory C++ book with some engineering flavor may consider Etter and Ingber5 or Bronson6 as optional texts.

References
1Stroustrup, B., The C++ Programming Language, Special Edition, Pearson Education, 2000.
2Shtern, V., Core C++: A Software Engineering Approach, Prentice Hall, 2000.
3Schildt, H., C++ The Complete Reference, Third Edition, Osborne/McGraw-Hill, 1998.
4Davis, S. R., C++ for Dummies, Fifth Edition, John Wiley & Sons Inc., 2004.
5Etter D. and Ingber, J., Engineering Problem Solving with C++, Prentice Hall, 2003.
6Bronson, G., C++ for Engineers and Scientists, Second Edition, PWS Pub Co, 1999.

Anupam Sharma∗
Fluid Mechanics Laboratory

General Electric Global Research Center
One Research Circle, ES-500
Niskayuna, NY-12309, USA

∗ Aerospace Engineer, AIAA Student Member, sharma@research.ge.com

237

